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S U M M A R Y  
In this paper we consider the problem of calculating the resistive torque on a disk rotating slowly with constant 
angular speed in the surface of a liquid with an adsorbed surface film. Using the method of complementary 
representations for generalised axially symmetric potential functions, the boundary-value problem for the 
azimuthal velocity component is reduced to the solution of a Fredholm integral equation of the second kind. This 
equation is solved numerically and asymptotically for all values of the ratio of the surface shear viscosity of the film 
to the viscosity of the substrate fluid, and values calculated for the substrate and film torques on the disk. The 
results are compared with previous work of Goodrich and his co-workers. 

1. Introduction 

In a recent series of papers [1 to 5] Goodrich and his collaborators have studied the 
dynamics of a rotating disk viscometer for the measurement of the surface shear viscosity of 
an adsorbed film. In essence the apparatus consists of a thin circular disk or annulus inserted 
into the plane interface between a very thin film of viscous fluid and an underlying substrate 
of different viscous fluid. The disk is rotated slowly, and the torque necessary to maintain 
the steady rotation is measured. From a knowledge of this torque, the viscosity of the 
substrate and suitable theoretical formulae, the surface shear viscosity of the film is deduced. 
The work of Goodrich et al. was directed at providing theoretical information on the driving 
torque in various configurations. 

In I-l] an analysis is made of the problem of a rotating circular disk. The fluid motion is 
assumed to be steady and slow enough for the linearised Stokes equations to be used; the 
only non-vanishing component of fluid velocity w is then in the azimuthal direction. The 
problem of determining w is of the mixed boundary-value type, but its mathematical novelty 
lies in the nature of the condition imposed on the surface of the fluid outside the disk. If the 
x-axis of a system of cylindrical polar coordinates (p, x, ~b) is drawn into the fluid normal to 
the surface then, outside the area covered by the rotating disk, the balance of substrate 
stresses on the adsorbed film and the internal film stresses is expressed by the "generalised 
impedance condition" 

(~W (~2W 
~ ~ -  - ,j ~x--&-z- = o ,  
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where/~ and ~/are respectively the coefficient of internal viscosity of the substrate and surface 
shear viscosity of the adsorbed film. (Boundary conditions of a similar structure also appear 
in geomagnetic problems concerned with currents induced by varying magnetic fields in 
finitely conducting sheets [6, 7].) Over the disk region the surface fluid velocity must equal 
that of the disk. 

The approach of [1] is to use a Hankel-type representation of w and to formulate the 
mixed boundary conditions on the fluid surface as a pair of dual integral equations. By 
various manipulations the solution of the dual relations is reduced to that of a Fredholm 
integral equation of the second kind for the unknown function in the Hankel representation 
of w. This integral equation is then reformulated as a variational principle, and an 
approximate solution found by the optimisation of suitable trial solutions. These results are 
used in I-2] to calculate approximations to the film and substrate contributions to the torque 
on the disk. 

There are several respects in which the analysis of [1] and 1-2] seems not to be wholly 
satisfactory. First, the solution of the special case/~ = 0 in Section 3 of 1-1] is seen to contain 
a divergent integral if the solution (6) of the dual relations (5) is substituted back into (5)2. 
The surface velocity field is, however, given correctly by (8) of 1-11 and an alternative 
elementary derivation is given in Appendix i to this paper. Second, the governing Fredholm 
integral equation (15) of [1] is over an infinite range, and appears to be unsuitable for 
asymptotic solution as either 2 ~ 0 or 2 ~ 0% where 2 = ~///~. The infinite range means that 
several of the standard numerical techniques of integration are not available, and the 
variational approach adopted involves much elaborate analysis of integrals of the Weber- 
Schafheitlin type. Finally, in [2] there is the problem of deciding for small 2 which of two 
film-torque curves is the correct one. 

In view of these points and because of the intrinsic mathematical interest of the mixed 
boundary-value problem involved, a re-examination of the circular disk viscometer problem 
has been undertaken. In Section 2 of this work the problem is formulated in the language of 
Generalised Axially Symmetric Potential Theory (GASPT) as a mixed boundary-value 
problem for a five-dimensional potential function. Using the method of complementary 
representations, developed by Ranger 1-8] and Shail [9] and summarised in Appendix 2, the 
five-dimensional problem, with the generalised impedance condition off the disk, is mapped 
onto a four-dimensional problem with a conventional impedance condition imposed 
outside the image of the disk. A representation for the four-dimensional potential function is 
then established using Green's theorem (a technique not readily available in five dimensions 
due to the unusu.al nature of the generalised impedance condition), and a Fredholm integral 
equation of the first kind derived for an unknown source distribution. This equation is 
unsuitable for numerical analysis since the source distribution is expected to have an 
integrable singularity at one end of the (finite) integration range; thus standard methods 
[10] are used to convert the equation to a Fredholm equation of the second kind for a 
derived quantity T(u) which is regular over the interval of definition of the integral equation. 
Expressions are then obtained in terms of T(u) for the substrate and film torques acting on 
the disk. 

In Section 3 the governing integral equation is solved numerically by first reducing it to an 
infinite set of simultaneous linear equations in the coefficients of a suitable Fourier-Dini 
expansion of T(u), a procedure suggested by Mangulis [11], who treats an equation of 
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similar structure which arises in the study of sound radiation from a baffled circular piston. 
The infinite set of equations is truncated and solved on a computer, and the substrate and 
film torques evaluated. It is found that convergence with respect to Y ,  the size of the 
truncated system of equations, is satisfactory except for small values of the ratio r//p, and 
sample numerical results are given for a range of values of this parameter. 

In Section 4, asymptotic expressions are developed for the substrate and film torques in 
both of the limits 2 ~ oo and ), ~ 0. The latter results enable a choice to be made between the 
two curves given for the film torque in [2]. The paper concludes with some suggestions for 
extensions of the work. 

2. Formulation of the problem 

The configuration envisaged is as follows. A circular disk is inserted to zero depth into an 
infinite plane film-covered fluid interface and is rotated about a vertical axis through its 
centre with uniform angular speed. Units are chosen so that the disk radius and rotation 
speed are both unity, and the fluid motion is assumed to be sufficiently slow to permit the 
linearisation of the Navier-Stokes equations. Cylindrical polar coordinates (p, x, qS) are 
taken so that the fluid (assumed infinitely deep) occupies the region x > 0, the x-axis being 
coincident with the axis of rotation of the disk. The only non-vanishing component of fluid 
velocity is then the azimuthal component w(x, p) which satisfies, in x _> 0, the equation 

~2W 1 ~W W ~2W 
~ - +  P ~p ~ - +  ~x--~---0. (1) 

The boundary conditions on x = 0 are 

and 

w = p ,  O_<p_<l,  (2) 

~W t~2W 
/z ~-x - r/8x-~-z- = 0, p ~  1, (3) 

where / t  and r/ are respectively the internal and shear viscosities of the substrate and 
adsorbed surface layer of fluid. Further, both w and t3w/dx must vanish as (x 2 + p2)½ ~ oo. 

We next write 

W(X, p) ---- pV(3i(x, p);  

then in x _> O, V~3)(x, p) satisfies the equation 

L 3 Vt3)(x, p)  -- O, 

where L k is the differential operator 

0 2 k t? t32 
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In the language of GASPT, V (3) is a five-dimensional harmonic (see Appendix 2), and from 
(2), (3) satisfies on x = 0 the conditions 

V(3)(0, p)  = 1, 0 < p < 1, (4) 

6qV (3) ~2V(3) 
/a 0x , 1 ~  = 0, p > l .  (5) 

Using equations (A12) and (A13) with k = 3, V(a)(x, p) can be represented as 

1 f~ y2V(Z)(x,y) V(3)( x, P) = 72- (p2 _ y2)~ dy (6) 

fl y-2V(-2)(X'y) dy, (7) = -- (y2 _ p2)½ 

where Vt±2)(x,y) are a pair of conjugate four-dimensional harmonics, satisfying the 
differential equations 

L+2V(+2)(x, y) = 0, 

and the Stokes-Beltrami relations (A6): 

~V (2) 1 (~V (-2) (~V (2) 1 t~V (-2) 
~ - y2 By ' ~ =  y~ ,~x 

Consider next the boundary conditions to be imposed on V~2)(x, y). From (2) and (6), 

1 foPY2~2)(0 ,y) d y = l ,  0 < p < l ,  72- (p2 _ y2)~ - - 

an Abel integral equation with solution 

IA2)(O, y) = 4fiz, 0 < y < 1. (8) 

Similarly, equations (3) and (7) give 

a2V(-2)(O' Y) OV(-2)(O' Y) = O, y > 1. (9) 
~/ ~x 2 - - / l  ~x 

Using the second of the Stokes-Beltrami relations, (9) may be written as 

0 { t;3 Vt2)(0, y) flV(2)(0, y)} = 0 ' y > l .  (10) 
c~y r/ 0x 

To ensure the vanishing of w and Ow/Ox as (p2 + x2)~ ~ ~ ,  we  must demand that V(2)(x, y) 
and OV(2)(x, y)/Ox ~ 0 as (x 2 + y2)~ ~ ~ .  An integration of (10) now shows that 

OV(2) tl-~-x (O,y)-itV(2)(O,y)=O , y >  1, (11) 
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a conventional impedance-type boundary condition. The mixed boundary-value problem 
for Vt2~(x, y) may now be specified as that of finding a solUtion of L: Vt2)(x, y) = 0 in x > 0, 
vanishing suitably at infinity, and satisfying the mixed conditions (8) and (11) on x = 0. 

To solve the problem for the harmonic l~2)(x, y) we first construct a representation using 
the conventional Green's function approach. Let G(x, y; x', y') satisfy the equation 

L2G(x, y; x', y') = -;~- d(x - x')6(y - y') (12) 

in [0, oo) x [0, oo), and the boundary condition 

0G (13) r / - ~ - - p G  = 0 on x = 0 ,  0 < y <  oo. 

According to Weinstein [12], a fundamental solution of (12) which is O(r -~) as r - -  
(x 2 + y:)~ --* oo is 

1 t -  ~ e-I~-x'l, sin yt sin y'tdt. (14) Go(x, y; x', y') = yy--7 

The appropriate Green's function satisfying (13) now follows as 

fo o 1, t -  a sin yt sin y't O(x, y; x', y')  = 

x e -Ix-x'lt + 2 ~ - ~ T e  -tx+x')* dt, (15) 

where (x, y), (x', y ' )e [0 ,  oo) x [0, oo), and an application of Green's theorem (see [12]) 
yields the representation 

fl t } Vt2)(x ' y) = ~-1 y'2G(x, y; O, y') 2-  ~ Vt2)(0, y') 8x' (0, y') dy', 

or, using (8), 

Vt2)(x, y) = ~- y'2G(x, y; O, y')f(y')dy', (16) 

where 

4 c~V ~2) 
f(Y) = 7r2 Ox (0, y). (17) 

Again invoking (8), the unknown source distribution f(y) is determined by the integral 
equation 

fly'ZG(O, O, y')f(y')dy' = 4, 0 _< < 1. (18) Y; Y 
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Equation (18) is a Fredholm integral equation of the first kind; in the limit 2 ~ oo, i.e. a 
very viscous surface layer, its solution is given by 

f(y) = 4/n(1 - y2)½, (19) 

exhibiting an inverse square root singularity as y --, 1 - 0 .  We therefore transform it into a 
Fredholm equation of the second kind for a derived frunction which is regular. To this end, 
write 

G(O, y; O, y') = Ko(y, y') + Kl(y , y'), 

where 

2 I ~ t_  ~ sinytsiny' tdt ,  Ko(y, y') = yy~ 
Jo 

and 

2 foo 1 
K~(y, y') = - yy--7 o t(1 + 2t) sin yt sin y'tdt. 

Equation (18) is equivalent to 

f l  y'2Ko(Y, y')f(y')dy' = 4 - f /  y'2Kx(y , y')f(y')dy', 

with ([-13], page 70) 

2 I ?  in(y'y') t 
Ko(Y, Y') = yy----c (yZ _~)½(y,2 t2)½ dt. 

(20) 

Using Williams' method [10], equation (20) can be transformed into an equation of the 
second kind, namely 

T(u) = 1 + vT(v) 1 + 2t 

where 

0 < u < 1, (21) 

(22) T(u) = ½ 11 Yf(Y) dy. (y2 _ u2)~ 
do 

(It is of interest to note that equation (21) has also arisen in work of Chakrabati [14].) It 
follows from (22) that 

4 d ~ uT(u) 
f(Y) = ny dy J r  (u 2 _ y2)~ du; (23) 

in the special case 2 --* 0% (21) has the solution T(u) = 1, 0 < u < 1, and substitution in (23) 
confirms the result (19). 
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We next derive expressions for the substrate and film torques. The substrate torque M 
exerted on the base of the disk by the fluid is given by 

M-M-p = 22z (~ p2 t~w(O,t~X p) dp, 

= 2~z I a p3 c~V(3)( O, P) dp, 
c~x Jo 

(24) 

where, from (6), 

a~a)(0, p) _ 1 f y2 t~V(2)(0'Y) dy. (25) 
0x ~ ~o (y2 _ p2)k t3x 

Substituting (25) into (24), reversing the orders of integration and introducing f(y) defined 
by (17) then leads to 

P = -~-  - 2~z y2(1 - y2)~f(y)dy. (26) 

Equation (26) is now expressed in terms of T(u) by substituting from (23) for f(y); on 
integration by parts followed by an interchange of orders of integration, the final result is 

M 
m 

p 22 
- 8 f~ uT(u){2E(u) - K(u)}du, (27) 

where K(u) and E(u) are the complete elliptic integrals of modulus u of the first and second 
kinds. Since K(u) is singular as u ~ 1, an alternative form of (27) proves useful in numerical 
work, namely 

M = 2-~ - 8T(1) + 8 I 1 u2T'(u)P(u)du, (28) p Jo 
where 

P(u) = sin 2 0(1 - u 2 sin 2 O) ½ dO. 

The film torque N exerted by the surface layer of fluid on the rim of the rotating disk is 
given by 

/'/ p-- , l+0 

= 2rc2 lim 0V~a)(0' p) 
p~x+o 3p ' 

(29) 

where, from (7), 

fp O y- 2 V ~- 2)(0 , y) dy. 
V~3)(O, P) = - (y2 _ p2)~ 
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Carrying out the p-differentiation, using the first of the Stokes-Beltrami relatioqs, and the 
boundary condition (11) on V(2)(0, y) for y > 1, it is found that 

lim c~ IAa) (O,p)= - 2 - ~ f f  Y v(Z'(O,y)dy. (30) v-* 1 + o op (y2 _ 1)~ 

To express (30) in terms of T(u), we have from (16) and (23) that 

4fo { d ;  uT(u) du}dy' V(2)(O, y) = -- ~ y'G(O, y; O, y') --~ , (u 2 _ y,2)~ 

- 42 f~uT(u){ f 1 +t 2t J°(ut)sinytdttdu" 

Thus, 

f~ Y 1~2)(0, y)dy (y2 _ 1)~ 

; {;; (f; )} 42 uT(u) t Jo(ut) sin yt dy dt du 
= ~ 1 + At (y2 _ 1)-~ 

= 22 uT(u 1 + 2t J°(ut)J°(t)dt du 

= - 1 } ,  

from the integral equation (21). It follows that 

P )  - 2  - 2 { r ( 1 )  - 1 } ,  lim t~p = 
p ~ l + O  

and 

N 
- -  = -47r2T(1). (31) // 

3. Numerica l  solution 

It can be shown that the kernel of integral equation (21) is logarithmically singular when u 
= v. Using arguments similar to those of Hutson [15], it can be proved that the equation 
possesses a unique solution for all 2 > 0. However, it does not seem to be possible to solve 
(21) in closed form; hence either numerical or asymptotic procedures must be used. In this 
section a numerical solution of (21) is described, based on Mangulis' treatment [11] of an 
equation of similar structure. 

Following Mangulis, the various terms in (21) are expanded in Fourier-Dini series; thus 
we write 

T(u) = ~ c,.Jo(VmU)/Jo(vm), (32) 
m=O 
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where v o = 0, and Vm is the m-th positive root in ascending order of magnitude of the 
equation J l (v )  = 0. Further, 

1 
Jo(vt)  = 2t ~ (t 2 z J l ( t )Jo(v~u) ,  

m=O -- vm)Jo(vm) 
(33) 

and S~ vT(v)Jo(v t )dv  can be evaluated from (32) and (33) using the orthogonality relations 

f i  lJo(Vm~))Jo(vnl))dv = l {Jo(vm)} 2,~mn. (34) 

Substituting the various Fourier-Dini expansions in (21) and equating coefficients of 
Jo(vmU) results in the infinite set of linear equations 

c m - ~, hm.c, = dmo, m = O, 1 , 2 , . . . ,  
n = 0  

where 

fo h~. = 2 (1 + 2t)(t z - v~)(t 2 - v~) {Ji( t )}2dt"  

(35) 

(36) 

Equations (35) can now be solved and T(u) computed to the required degree of accuracy by 
the method of truncation to a finite set. 

Consider next the film and substrate torques. From (31) and (32), we have that 

N 0o 

- - 4 ~ 2  Z c,.. (37) 
~/ m = O  

A suitable expression for the substrate torque can be found from (28) by substituting for 
T'(u)  and integrating term-by-term; the result is that 

M zc 
/~ = ~ f  - 8 lmc m, (38) 

m = O  

where the constants I m are defined by 

I m = ½ + Jo(vm) U2Jl(V~u)P(u)du.  (39) 

The coefficients l m are independent of 2 and have been calculated numerically. 
The numerical solution of equations (35) truncated to a system of Y equations, has been 

carried out numerically for various values of 2 and for X up to 81. Standard NAG library 
algorithms for numerical integration and the solution of sets of linear simultaneous were 
used. The form (36) is not suitable for the numerical calculation of the coefficients hm.; a 
more convenient expression results from an application of Noble's contour-integral tech- 
nique [16], namely 
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nV.Jo(v.)Yo(v.) 42 (~o t4ii(t)Kl(t) 
h.,. = - 2(2v. + 1) 5,.. - - -  J o  (40) n (1 + ~,2tE)(t2 + V2)(t 2 + V 2) dt. 

Since 11 ( t ) K  l ( t )  ~ (2t)- 1 as t -o 0o, convergence at the upper limit for n, m > 0 is enhanced 
by writing 

t l ,( t)K,(t)  = {tI,(t)K,(t) - 1} + ½, 

and evaluating in closed form the infinite integral 

f ;  t3 dt 
(1 + 22t2)(t2 + v.2)(t 2 + V2m) ' 

Table 1 shows some sample numerical torque results for various values of 2 in the range [.02, 
lOO]. 

TABLE 1 
Values of M/It and N/It for various 2. 

2 .02 .025 .05 .075 
- M/it 4.40 4.33 4.10 3.95 

2 .1 .2 1 10 100 
- M/it 3.84 3.581 3.078 2.743 2.767 

2 .02 .025 .05 .075 
- N / i t  1.7" 1.8" 2.6* 3.2* 

2 .1 .2 1 10 100 
-N/ I t  3.7* 5.62 17.41 132.6 1264.6 

Experience showed that substrate torque convergence was satisfactory, and the figures given 
are believed to be correct to the number of decimal places quoted. Convergence of the film 
torque series (37) is less satisfactory and doubtful values are marked with an asterisk; thus 
when 2 = .1, the quoted result 3.7 is of little value. However if the process of series 
completion* (see [17]) is applied to the first 80 partial sums when x = 1 of )Z~= o d,x m, 
where dm= 4n2c,,, a value of 3.56 is obtained, which compares very favourably with the 
value estimated from curve B in Fig. 4 of [2]. Similarly, if series completion is applied when 
2 = .02, a value of 1.43 is obtained for the film torque, again in agreement with curve B in 
[2]. Converge of the film-torque with respect to X before and after completion of the 
series is illustrated in Table 2. 

* The series was completed after X terms by a remainder proportional to 

~'-i (n - ~)! 
( l - x )  ~ - E  - - x " .  

.=o n! (-~)! 
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TABLE 2 
Film-torque convergence and series completion. 

69 

d 

2 = .1 2 = .02 

",~r- i X - 1  

d m series ~, d~ series 
m=o completion m=o completion 

75 3.7486 3.560 1.6972 1.4322 
76 3.7469 3.560 1.6949 1.4322 
77 3.7453 3.560 1.6926 1.4324 
78 3.7437 3.560 1.6903 1.4324 
79 3.7421 3.561 1.6881 1.4325 
80 3.7406 3.561 1.6860 1.4325 

A comparison of the values for the substrate torque given in Table 1 with those taken from 
Fig. 3 of [2] shows that for small ), our computed values are greater than those of Goodrich 
and Chatterjee. Furthermore,  our values extrapolate smoothly to those predicted by the 

asymptotic expression as 2--, 0, derived in the next section. Thus it appears that the 
phenomenon of negative excess torque for small ), conjectured in [2] may result from 

inaccuracies in computat ion of the substrate torque. 

4. Asymptotic analysis 

4.1. The case 2 >> 1. 
Setting a = 2-1, equation (21) can be written as 

T(u) = 1 + f~  vK(u, v)T(v)dv, 

where 

t 
K ( u ,  v)  = a - -  J o ( u t ) J o ( v t ) d t  

t + a  

= a  f o J o ( U t ) J o ( v t ) d t _ a 2  I ° 1 
t + a  

- -  J o ( u t ) J o  (vt)dt. (41) 

In order to expand the second integral in (41) asymptotically for small a, we re-write it in the 
form 

oo 2 n  d~ 

where 

p2 = u 2 + v 2 _ 2uv cos ~. 

Interchanging orders of integration in (42), and using the result 
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f o  e-ha (~2 + (72)½ drl = ½n{Ho(0-,a ) - Yo(0-/~)}, 

where Ho(x ) is the Struve function of zero order (see [18], p. 328), it follows that 

K(u, v) = 0- Jo(ut)Jo(vt)dt  - ¼a 2 {Ho(a/t ) - Yo(al~)}d~. 

Using known expansions for Ho(x ) and Yo(x) for small values of x, K(u, v) can now be 
expanded asymptotically in the limit 0- ~ 0. To lowest order, 

Ho(0-lt) _ Yo(alt ) = _ __2 log a + 0(1) as 0- ~ 0, 
7g 

whence 

f;  , K(u, v) = 0- Jo(ut)Jo(vt)dt  -F 0-2 log 0- + 0(0-2), as 0- ~ O. (43) 

Using expansion (43), the equation (21) can be solved iteratively, with the result that 

r(u) l+20-E(u) 1 2 = + 70- log 0- + 0(0"2), 

2• 1 
= 1 + E(u) - 2 - - ~ - l o g  2 + 0(2-2), 

a ---* 0, 

2 ~ 0o. (44) 

From (31) and (44) the film torque is found as 

27z 
N _ - 4 n 2  - 8 + 2 + O(2-1), 2 0o. (45) /z ~ -  log --, 

Similarly, substituting (44) into (27), and using the result that 

f~  uE(u){2E(u) - K(u)} du - 1 (46) - -  2 '  

the substrate torque has the asymptotic development 

8) 4 
M a 8- + "q- /~ + 0 ( 2 - 2 ) ,  /~ ~ .  (47)  
Ft 2- n ~ log 

When 2 = 10, equations (45) and (47) give torque values of -132.2 and -2.734, 
compared with the computed values of-132.62 and-2.743.  When 2 = 100, (45) and (47) 
give-1264.3 and-2.676,  compared with the computed values of-1264.6 and-2.6759, a 
very satisfactory agreement which confirms the numerical analysis of Section 3. 
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4.2. The case 2 ~ 1. 
To treat the case 2 ~ 1 it is convenient to return to the representation (16) of V(2)(X, y); 
using the definition (16) of the Green's function G, we have that 

V~2)(x' Y) = ~ y  1 + 2t sin yt y' sin y't(2f(y'))dy' dt, (48) 

where 

4 _ 2 OF(2) 
2f(y) = ~- 8x (0, y), 0 < y < 1. (49) 

If 2 ~ 1, as a first approximation we neglect the term 201/(2)(0, y)/8x in (49) in comparison 
with 4/n and set 2f(y) = 4/n. It may be verified that the resulting approximate solution, 

4x/~ e-Xt 
| n~Y J 0  t~(1 + 20 sin tyJ~(t)dt, (50) 

satisfies the boundary condition IA2)(0, y) = 4/n, 0 < y < 1, with an error which is 0(2) 
everywhere except in the vicinity of the edge y = 1. Thus for 0 < 2 ~ 1, we have that 

and 

4v/2 1 
~2)(0, y) _ | sin ytJ~(t)dt, 

n~Y 3 0  t½(1 + 20 
(51) 

01/(2)(0, y) 4x/~  ~o  t ½ 
Ox - n~Y J o  1 + 2t sin ytd~(t)dt. (52) 

To calculate the substrate torque we have from (24) and (25) that 

- -  - -  I ~  8V(2 )  
M = 2n y2(1 _ y2)½ ~ x  (0, y)dy 

fo 1 --- 42 , /~  #(1 + 20 J~(t)d2(t)dt (53) 

on using (52) and a case of Sonine's first finite integral ([18], p. 373). The infinite integral in 
(53) can now be expanded asymptotically for small 2 using the Mellin transform technique 
described in [19], with the result that 

M 
16 4n½2 ½ + 0(2½), 2 ~ 0. (54) _ _ I  ~ 3 I 

To calculate the leading term in the film torque as 2 ~ 0, (51) is substituted into the 
formula 

N = 4n2 + 2n ~oo y V(2)(  0 ,  y)dy. 
/.t .Jo (y2 1)½ 
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Carrying out the y-integration using Sonine's infinite integral ([13], p. 31) gives the result 

N 1 
"~ 4nx/~ Jo J~(t)J°(t)dt + 0(2) /2 tt(1 + 2t) 

= 4zct2 ½ + o(2i), 2 ~ 0. (55) 

Results (54) and (55) are the required asymptotic limits as 2 ~ 0. Note the ~ - M//2 
- N//2 = o(2½), which emphasises the conclusion in [2] that if the surface shear viscosity of 
the adsorbed layer is small in comparison with the substrate viscosity, the rotating-disk 
apparatus is not a reliable experimental method. 

It has been remarked earlier that for small 2 the substrate torque results in [2] are 
consistently less than our figures. The asymptotic formula (54) gives results for 2 < .01 
which join on smoothly to numerical results for larger 2; in Fig. 1 we plot our substrate 
results for 0 < 2 < .2 and include for comparison some points taken from Fig. 3 of [2]. 

Turning to the film torque, results calculated from (55) for 2 < .01 lie on a reasonable 
extrapolation to the origin of curve B in Fig. 4 of [2]. Thus this evidence, in conjunction 
with our numerical values for larger 2, confirms curve B as the correct curve. 

5.5 

5.0 

4.5 

4.0 

3.5 

O 

® 

3.0 I B I I t 
0 .02 .04 .06 .08 .10 

Figure 1. Graph of-M/It against 2;+ values calculated from the asymptotic formula, Q values calculated 
numerically, ~9 values taken from Fig. 3 of [2]. 

5. Concluding remarks 

In this paper we have given a treatment of the rotating disk problem which differs 
considerably from the original work of Goodrich. There are alternative ways of deriving the 
governing integral equation (21), and of course the methods used in the paper reflect the 
personal preferences of the author. The treatment of the problem is complete in that 
numerical or asymptotic methods have been provided which cover the full range of values of 
the parameter 2. The one unsatisfactory detail is that I have been unable to give an accurate 
order estimate of the error in the torque formulae (54) and (55) for small 2. A rigorous 
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derivation would require a detailed consideration of the edge problem, and the difficulty of 
such problems is well-known (see, e.g. the considerable literature on the two-disk capacitor 
at small disk separation [20, 21]). However, it is felt that (54) and (55) give accurately the 
torques correct to 0(2~), and numerical evidence reinforces this conclusion. 

The methods of this paper can be used for problems with more complicated geometries, 
for example fluids in bounded containers. The modification necessary is to replace the 
Green's function (15) by one appropriate to the image in (x, y)-space of the physical 
container. The reduction of the problem to that of solving a Fredholm equation of the 
second kind can then be effected, and numerical and asymptotic solutions derived. The 
problem of the rotating annulus can also be formulated and solved, since methods exist for 
treating three-part mixed-boundary value problems (see, e.g. 1-13]). 
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Appendix 1. The limiting case ~ ~ O, 2 ~ oo 

In this case the velocity component w(x, p) satisfies (1) and the conditions 

w(0, p) = p, 0 < p _< 1, (A1) 

O2W(0, p) 
Ox 2 - 0, p > 1. (A2) 

It follows from (1) and (A2) that 

1) 
+ p2 w(0, p) = 0, p > 1, 

p dp 

which has the general solution 

w(O, p) = Ap + B/p, p > 1. 

The arbitrary constants A, B are found as 0 and 1 from the requirement that w ~ 0 as p ~ 
and the continuity of w(0, p) at p = 1. Thus 

w(0, p) = 

p, 0 ~ p ~ l ,  

1 (A3) 
- - ,  p >  1, 
P 

in agreement with [1]. The film torque N is found from (A3) as -4m/ ,  confirming the 
appropriate limit of (46). The velocity field in the fluid may be expressed as a Hankel 
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transform as in [1]; however this transform may not be legitimately differentiated twice with 
respect to x and x set equal to zero. 

Appendix 2. Complementary representations and GASPT 

Let (p, x, ~b) be cylindrical polar coordinates, and define the differential operator L k as 

632 k 63 635 
L k --- ~ -  + P ~ -4 63X2 , (A4) 

where k is a real number. A solution of the differential equation 

LkV = 0 (A5) 

which is finite on the axis p = 0 is denoted by v(k)(x, 19); if k > 0, then in the terminology of 
GASPT, V tk~ is an axially symmetric harmonic function in a space of k + 2 dimensions. We 
associate with 1~ k) a conjugate harmonic lA-k), where 

Z_k V(-k) =- 0 

and the conjugate pair (V (k), V (-k)) satisfies the Stokes-Beltrami relations 

@liCk) 1 63V ~-k) 631/tk) 1 63I A-k) 

cox pk 63p 6319 pk 63x (A6) 

A particular pair of harmonics, finite in x > 0, are 

lAk~ = _ p½(- k + 1) J ½tk_ 1)(sp) e - sx, (A7) 

~-k~ = p½tk+ 1)j½tk + 1)(sp)e-SX, (A7) 

where s > 0. 
Consider next a space of k + 1 dimensions in which the axial and radial coordinates are 

(x, y). Using (A7) and superposition we can construct the conjugate harmonics 

fo v(k-1)(X, y) = y-½k+l A(s)J½k_l(sy)e-S~ds, 

(A8) 
= - A(s)J½k(sy)e s, 

\ l r  / Jo 

where A(s) is chosen to ensure convergence of the integrals. The pair (1Ak-1), lA-k+l)) 
vanishes at infinity in the half-space x > 0; further lAg-l) is an even function of y and 

Vt-~+ l~(x, O) = O. 
By the Sonine integrals, we can write 

rt ½ 
f~  (p2--y2)-½y½kJ½k_l(sy)dy----(~S)p½tk-1)J½(k_l)(sp) , (A9) 
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l~ J ~ k_ l~(sp), (A10) (y2 _ p2) -½y-~k+ l j½k(Sy)dy = p~:(-k+ 

where k >_ 1. Thus, introducing the (k + 2)-dimensional harmonic 

V~k~(x, p) = p½(-k+l~ s-:tA(s)J~k_l~(sp)e-SXds, (All) 

it follows from (A8), (A9), (A10) and (All) that 

f ]  yk- 1 lAk- l~(x' dy (A12) Y) 
Y) 

v (p2 _ y2)~ 

= - Ip ~ Y-k+llA-k+l)(x'y)(y2 _ p2)½ dy. (A13) 

(A12) and (A13) are the basic complementary representations. The case k = 1 was given 
originally by Ranger I-8]; the conjugate harmonics V~±°)(x, y) then satisfy the Cauchy- 
Riemann equations and f ( z )=  V~+°)(x, y )+  i V~-°)(x, y) is an analytic function of z = x 
+ iy (this appearance of the symbol z is the motivation behind the non-standard choice of x 
as the axial cylindrical polar coordinate in this paper). 
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